Norm
AI-Generated
This file was generated by AI and may require review.
Definition
A norm on a vector space $V$ is a function $\|\cdot\|: V \to \mathbb{R}$ satisfying:
- Positive definiteness: $\|x\| \geq 0$, with equality iff $x = 0$
- Absolute homogeneity: $\|\alpha x\| = |\alpha| \|x\|$ for all scalars $\alpha$
- Triangle inequality: $\|x + y\| \leq \|x\| + \|y\|$
From Inner Products
Given an inner product, the induced norm is:
$$ \|x\| = \sqrt{\langle x, x \rangle} $$For functions:
$$ \|f\| = \sqrt{\int |f(x)|^2 \, dx} $$Intuition
The norm measures the “size” or “magnitude” of a vector or function:
- In physics, $\|f\|^2$ often represents energy
- The norm generalizes the concept of length from Euclidean space
Common Norms
| Norm | Definition | Name |
|---|---|---|
| $\|x\|_1 = \sum \lvert x_i \rvert$ | Sum of absolute values | $L^1$ / Manhattan |
| $\|x\|_2 = \sqrt{\sum \lvert x_i \rvert^2}$ | Square root of sum of squares | $L^2$ / Euclidean |
| $\|x\|_\infty = \max \lvert x_i \rvert$ | Maximum absolute value | $L^\infty$ / Supremum |
Related Concepts
- inner_product — induces a norm via $\|x\| = \sqrt{\langle x, x \rangle}$
- Lp_space — function spaces defined by $L^p$ norms
- Metric — a norm induces a metric via $d(x,y) = \|x - y\|$