Set

⚠️AI-Generated

This file was generated by AI and may require review.

A set is a well-defined collection of distinct objects, called elements or members of the set.

Notation

  • $x \in A$ means $x$ is an element of $A$
  • $x \notin A$ means $x$ is not an element of $A$
  • $\{a, b, c\}$ denotes the set containing elements $a$, $b$, and $c$
  • $\{x : P(x)\}$ or $\{x \mid P(x)\}$ denotes the set of all $x$ satisfying property $P$

Basic Sets

  • $\emptyset$ or $\{\}$ — the empty set
  • $\mathbb{N}$ — natural numbers
  • $\mathbb{Z}$ — integers
  • $\mathbb{Q}$ — rational numbers
  • $\mathbb{R}$ — real numbers
  • $\mathbb{C}$ — complex numbers

Operations

  • Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
  • Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
  • Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$
  • Complement: $A^c = \{x : x \notin A\}$