Set
AI-Generated
This file was generated by AI and may require review.
A set is a well-defined collection of distinct objects, called elements or members of the set.
Notation
- $x \in A$ means $x$ is an element of $A$
- $x \notin A$ means $x$ is not an element of $A$
- $\{a, b, c\}$ denotes the set containing elements $a$, $b$, and $c$
- $\{x : P(x)\}$ or $\{x \mid P(x)\}$ denotes the set of all $x$ satisfying property $P$
Basic Sets
- $\emptyset$ or $\{\}$ — the empty set
- $\mathbb{N}$ — natural numbers
- $\mathbb{Z}$ — integers
- $\mathbb{Q}$ — rational numbers
- $\mathbb{R}$ — real numbers
- $\mathbb{C}$ — complex numbers
Operations
- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x : x \in A \text{ and } x \in B\}$
- Difference: $A \setminus B = \{x : x \in A \text{ and } x \notin B\}$
- Complement: $A^c = \{x : x \notin A\}$