Cauchy_Condensation_Test
[!warning] AI-Generated This file was generated by AI and may require review.
Definition
Suppose $(b_n)$ is decreasing and satisfies $b_n \geq 0$ for all $n \in \mathbb{N}$. Then the series $\sum_{n=1}^{\infty} b_n$ converges if and only if the series $\sum_{n=0}^{\infty} 2^n b_{2^n}$ converges.
Proof
Group terms: $b_1 + (b_2 + b_3) + (b_4 + b_5 + b_6 + b_7) + \cdots$
Since $(b_n)$ is decreasing:
- $b_2 + b_3 \leq 2b_2$
- $b_4 + b_5 + b_6 + b_7 \leq 4b_4$
Thus $\sum b_n \leq b_1 + \sum_{n=1}^{\infty} 2^n b_{2^n}$.
Similarly, $b_2 + b_3 \geq 2b_4$, etc., giving $\sum b_n \geq \frac{1}{2}\sum 2^n b_{2^n}$.
By the Comparison_Test, the two series converge or diverge together.