Infimum
Definition
A real number $i$ is the infimum for a set $A \subseteq \mathbb{R}$ if it meets the following criteria:
$i$ is a lower_bound for $A$
If $l$ is any lower_bound for $A$, then $i > l$
A real number $i$ is the infimum for a set $A \subseteq \mathbb{R}$ if it meets the following criteria:
$i$ is a lower_bound for $A$
If $l$ is any lower_bound for $A$, then $i > l$